machine-learning-portfolio

πŸš€ Fraud Detection MLOps Pipeline

Project Overview

Complete end-to-end MLOps pipeline for credit card fraud detection using AWS SageMaker, XGBoost, and explainability tools. This project demonstrates advanced machine learning engineering practices with automated deployment, monitoring, model explainability, and intelligent cost optimization for production-ready fraud prevention.

Vibe coded with ChatGPT and Claude on AWS infrastructure.

πŸ’° Cost-Optimized Production Architecture

πŸ—οΈ Intelligent Resource Management

This project demonstrates enterprise-grade cost optimization through strategic resource lifecycle management:

This approach showcases both advanced MLOps capabilities and cloud financial engineering expertise.

πŸ’Έ Cost Breakdown & Optimization

πŸ† Key Achievements

πŸ“‹ Deployment Evidence & Artifacts

πŸ” Production Validation Documentation

The artifacts/ folder contains comprehensive evidence of successful production deployment:

Model Explainability Results:

Deployment & Execution Evidence:

Visual Proof of Concept:

Artifact Type File Purpose
Global Explainability shap_summary.png Model-wide feature importance
Feature Rankings shap_importance.png Regulatory compliance documentation
Local Explanations lime_explanation_*.png Individual prediction interpretability
Deployment Logs deployment_evidence.json Production deployment validation
Pipeline Execution execution_evidence.json Complete workflow evidence

All artifacts generated during live production deployment and model validation phases.

πŸ—οΈ System Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚   Raw Data      │───▢│   Processing    │───▢│   Training      β”‚
β”‚   (S3)          β”‚    β”‚   (SageMaker)   β”‚    β”‚   (XGBoost)     β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                                                       β”‚
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚   Monitoring    │◀───│   Deployment    │◀───│   Evaluation    β”‚
β”‚  (CloudWatch)   β”‚    β”‚  (Validated)    β”‚    β”‚   (Metrics)     β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                               β”‚
                    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
                    β”‚ Cost-Optimized  β”‚
                    β”‚   Management    β”‚
                    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

πŸ“Š Complete MLOps Pipeline Implementation

βœ… Step 1: Data Engineering & Processing

βœ… Step 2: Model Training & Optimization

βœ… Step 3: Model Evaluation & Validation

βœ… Step 4: Model Explainability & Interpretability

βœ… Step 5: Model Registry & Governance

βœ… Step 6: Production Deployment & Validation

βœ… Step 7: Cost Optimization & Operations

πŸ”§ Technology Stack

Core MLOps Platform

Machine Learning

Explainability & Interpretability

DevOps & Automation

πŸ“ˆ Performance Metrics & Business Impact

Metric Value Business Impact
AUC-PR 0.7720 Excellent precision-recall balance for imbalanced data
AUC-ROC 0.9763 Outstanding discrimination capability
Dataset Size 284,807 transactions Enterprise-scale validation
Fraud Detection Rate 0.17% baseline Realistic production scenario
Response Latency <100ms (validated) Real-time transaction processing capability
Production Validation Successful Complete deployment lifecycle demonstrated
Cost Optimization 95% reduction Intelligent resource management
Artifact Coverage 100% Complete explainability documentation

πŸ’° Production Economics & Cost Engineering

Optimized Infrastructure Costs

Business Value Demonstrated

Enterprise Cost Strategy

🎯 Production Features & Capabilities

Validated Real-time Capabilities

Model Governance & Compliance

Operational Excellence

πŸ”’ Security & Compliance

Data Security

Model Compliance

πŸ“ Project Structure

fraud-detection-mlops/
β”œβ”€β”€ src/                          # Source code modules
β”‚   β”œβ”€β”€ preprocessing.py          # Data processing and feature engineering
β”‚   β”œβ”€β”€ train_xgboost_working.py  # Model training and optimization
β”‚   β”œβ”€β”€ evaluate_model.py         # Model evaluation and metrics
β”‚   β”œβ”€β”€ explain_model.py          # SHAP/LIME explainability analysis
β”‚   β”œβ”€β”€ register_and_deploy_simple.py  # Model deployment automation
β”‚   β”œβ”€β”€ create_enhanced_dashboard.py   # Monitoring setup
β”‚   β”œβ”€β”€ test_endpoint_final.py    # Endpoint testing and validation
β”‚   β”œβ”€β”€ run_full_pipeline.py      # End-to-end pipeline orchestration
β”‚   └── view_deployment_status_fixed.py  # System status monitoring
β”œβ”€β”€ data/                         # Sample datasets for development
β”‚   β”œβ”€β”€ sample_train.csv          # Training data sample
β”‚   β”œβ”€β”€ sample_test.csv           # Test data sample
β”‚   └── sample_valid.csv          # Validation data sample
β”œβ”€β”€ artifacts/                    # **DEPLOYMENT EVIDENCE & RESULTS**
β”‚   β”œβ”€β”€ deployment_evidence.json  # Production deployment validation logs
β”‚   β”œβ”€β”€ execution_evidence.json   # Pipeline execution history
β”‚   β”œβ”€β”€ explainability_results.json    # Complete SHAP/LIME analysis
β”‚   β”œβ”€β”€ shap_summary.png          # Global feature importance plots
β”‚   β”œβ”€β”€ shap_importance.png       # Feature ranking visualization  
β”‚   β”œβ”€β”€ lime_explanation_0.png    # Local explanation example 1
β”‚   β”œβ”€β”€ lime_explanation_1.png    # Local explanation example 2
β”‚   β”œβ”€β”€ lime_explanation_2.png    # Local explanation example 3
β”‚   β”œβ”€β”€ lime_explanation_3.png    # Local explanation example 4
β”‚   └── lime_explanation_4.png    # Local explanation example 5
β”œβ”€β”€ configs/                      # Configuration files
β”œβ”€β”€ docs/                         # Project documentation
β”‚   └── PROJECT_SUMMARY.md        # Technical implementation summary
β”œβ”€β”€ logs/                         # Execution logs and debugging
β”œβ”€β”€ requirements.txt              # Python dependencies
└── README.md                     # This documentation

πŸš€ Quick Start Guide

Prerequisites

Local Development Setup

  1. Clone repository: git clone <repository-url>
  2. Install dependencies: pip install -r requirements.txt
  3. Configure AWS credentials: aws configure
  4. Update S3 bucket names in configuration files

Pipeline Execution Options

Artifact Generation

🚧 Future Enhancements

Technical Roadmap

Cost Engineering Enhancements

Business Enhancements

πŸ… Key Learnings & Best Practices

MLOps Implementation

Production Cost Management

Fraud Detection Domain

πŸ‘¨β€πŸ’» Author & Contact

Marcus Mayo

πŸ“ License & Usage

This project is available under the MIT License. Feel free to use, modify, and distribute with appropriate attribution.


Project Status: πŸš€ Production-Validated with Cost Optimization Last Updated: August 2025

This project demonstrates enterprise-grade MLOps capabilities with validated production deployment, comprehensive explainability artifacts, and intelligent cost management strategies for fraud detection and financial technology applications.